In conclusion, let us note that the method proposed can be modified. Thus, if the outer given tempera-
ture varies sufficiently smoothly during a long time, then there is every foundation to consider that the rela-
tionship (19) remains valid in this interval. The problem can then be solved by partitioning 7 into a number of
finer sections which will be the computation steps, and the value of the temperature, obtained in the previous in-

terval, just for the value 7 = 1, will be used when going over to the next value of h{n. In the case mentioned,
such an approach is more efficient.

NOTATION
t is the time;
Z is the coordinate;
T(z, t) is the temperature;
Az, t), a(z, t) are the coefficients of thermal conductivity and thermal diffusivity, respectively;
hy, (0 are the coordinates of the phase-interface position;
H is the lower boundary coordinate;
L is the heat of the phase transition;
¥ is the volume weight of the soil;
w'(z) is the given moisture distribution in the soil;
Wy is the experimentally determined quality of moisture which does not freeze at 0°C.
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SEMI-ANALYTICAL ALGORITHM FOR THE APPROXIMATE
SOLUTION OF A NONSTATIONARY INVERSE PROBLEM OF
DIFFUSION ON THE BASIS OF A DIRECT METHOD OF
SOLUTION, LINEAR PROGRAMMING, AND
REGULARIZATION METHODS

P. I. Balk and T. V. Balk UDC 536.24.02

Some analytical solutions of the direct problem of diffusion are presented for infinite bodies.
The direct solutions constructed are used in algorithms for the approximate solution of the non-~
stationary inverse diffusion problem.

Results directly concerning the process of diffusion scattering of a substance are elucidated below., How-
ever, because of the analogy between the thermal conduction and diffusionprocesses, the results obtainedare
automatically carried over to the contiguous thermal-conductivity problem.

Let 0tn¢ and 0xyz be the combined Cartesian reference systeins with the ¢ and z axes directed downward.

Let us consider the free diffusion process in a half-space (in the absence of sources and sinks):
V=AE& n 0):E <oco, nj<<oo, {0} @
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At the time T = 7 preceding the beginning of the process of diffusion scattering of a substance in V, the con-
centration distribution C; of the substance is independent of ¢ and subject to the law C;, = F(¢, n). There is no
mixing of the substance in the vertical direction. The diffusion, which initially encloses the horizon ¢ =0 andis
propagated into the depths with time, will proceed on each of the horizons ¢ = h with its constant diffusion
coefficient D® , so that for the whole half-space V

0, t<<t®
]
D(h), T > T(k)

Here (M) is the time at which the diffusion process reaches the horizon £ = h, where 70 = Ty

D=D( 1= t=helo, o). @

The process described is characteristic to the formation of diffusion aureoles, developed on planar and
slightly convex slopes under rare and nonferrous metal deposits. The aureoles mentioned originate by means
of chaotic displacement (free diffusion) into the enclosing waste rock material formed from the upper horizons
of the bedrock because of the effect of different surface physical reagents thereon [1, 2].

Interpretation of the aureoles, which consists of predicting the distribution Cy(£) of some chemical ele~
ment in early deep bedrock according to known estimates of its distribution C(x) in the aureole and of separate
values of C() of the desired function Co(® (known from the results of assaying outcrops), reduces in the one-di-
mensional case F = F(£) to solving the integral equation

L)

! : _' (xr—Ep
T fco ® exp[ » ]d& -
under the conditions
Co(g) =C¥, Ei€(—o0, ), i=0,n @)

Hence, the diffusion scattering parameter o = v2DT is an unknown quantity,

Let us note that in practice it is not required to obtain the solution on the whole axis but only in some in-
terval (a, B).

The problem (3)-(4) is of definite theoretical interest, since the majority of developments are devoted to
inverse boundary-value problems [3-6], while algorithms to determine the coefficients of the diffusion (heat
conduction) equation, just like the preceding concentration and temperature distributions over their running
fields, have as yet been studied in less detail. We limit ourselves to the case of giving the quantity Cy() at
one point:

Co(&) = C®, E€(— o0, o). (5)

Let us first consider the solution of the direct problem (3) for fixed 0. An analytical method for seeking
C(x, o) approximately is given in [7], based on a polynomial approximation of the field Cy(f):

L
Cot) = 2 4,00 @, v e ¥ = .. ()
{=0

Let us mention the two model classes ¢ and ¥ of functions which are sufficiently convenient for the approx-
imation of continuous and piecewise-continuous distributions and which admit of solvability of the right side
of (3) in elementary functions:

YO — (1, {sinElien-> {COs E}ien+}
N~ ={m—1}7, N*={2m}, (7)
Y = fexp (— B} (8)

()

Let @ and T() denote the spaces of all possible linear combinations of the functions ;" and zp§3) from the

classes ¥® and ¥(®, with real coefficients.

It is known that the class of functions ¥ @ is closed in the space Ly(0, 27) of square integrable functions,
while the class ¥®) is closed in the space Ly(0, ) with the weight function exp (—# [8]. Let us note that the
segment (o, B being studied can always be included in the interval (0, =) or (0, 27) by a linear transformation.
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The expediency of introducing each new universal class #K) ig dictated by practical requirements in high-
speed algorithms: The presence of a wide set of classes . oK) permits a significant reduction in the number L of
terms in the a%)roximating construction (6) for a given degree of approximation both because of the selection
of the class ¥X) of functions closest to the approximation and because of the combination of functions qbli< of dif-
ferent classes ¥(K),

According to [9], the solution of the direct problem in the spaces T(2) ang TO) is given by the following
formulas:

w©

. L
Clx, )= T/_Qla_t—c S [As + ; {Ag;—; sin iE + As; cos ig)} )

o L
« exp [_ (."2_'0—2&} & = Ay + ; (Agis sin ix + Ay, cos ix) exp [— (i0)%/2], (9)

o

L 5 L
Clx, o) = _V;_? S [2 Aexp (— ig)] exp [_M]dg = Y Aexpitioi2lexp (— i) (10)
i=0

2
2¢° dourd

—o0

The transformation (3) transforms the spaces ¥ and 7(® into themselves.

We obtain the approximate solution of the direct problem for the arbitrary function by expanding it (for
an L selected a priori) in the components sinif, cosif [or exp (—i£)]. The coefficients of these expansions
participate directly, according to (9) and (10), in the formation of the approximating functions C(x) irom the
model spaces T ang #19,

Let us note that the approximation approach to solving the direct and inverse problems of heat conduc-
tion was practiced earlier, in the papers [4, 10, 11] for instance.

Let us investigate the problem of solvability of the problem (3)-(5).

1. We find first that for fixed ¢ the solution of (3) is unique. Upon imposition of bilateral constraints on
the variation of Cy(¢) (this should be dictated by the physical crux of the problem) the inverted problem (3) mean-
while becomes correctly formulated [12].

2. For unknown ¢and no constraints (5), Eq. (3) has a nondenumerable set of solutions.
Two different distributions —
L.
ch @ = AL + 2 (A, sin g — AS) cos iE),

i=1

L, ”
C' @ = AP + ¥ (Aflisin it 4 A5 cosi®) (L,>Ly)

i==1
— are transformed by using the integral transform (3) into the same function C(x) € ) if and only if

AV exp [— (ioy)2/2] = A exp [— (i6,)%/21,

R 11
AV =0, i=0,L, j=1L+1, L. b
The function C(x) € 70 is the mapping of the two distributions
Ly L,
c' @)=Y AV exp(— ), C¥ @ = AT exp(— &) (Ly<Ly
i=0 i=0
only in the case
A exp(ioy?/2l = ALY exp [(ioy)/2], a2

AV=0, i=0,L, j=L+1 L

Tl(le relati?n)s (11) and (12) determine a nondenumerable set of solutions of the inverse problem (3) in the spaces
%@ and ¢,

3. Now let the inverse problem (3) be solved in ¥ @ and ¥® under the constraints {5). Without limiting
the generality, let us consider the value of L to be known. Let us consider the class ¥, Having been given
an arbitrary value of o= oy, letus expand the function C(x, oy) in the components ¢§3) (x) = exp(ioy)?/2]exp (—ix) (i =
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0, L) (without a remainder), and let us thereby determine the unique solution Cy(£, ;) of (3) for fixed.¢. In the
genera% case the curve Cy(, o) does not pass through the point (§;, C'") and therefore does not belong to the
set {Cg e, ay), 1Bjloph = O—L}tGT of the solutions of problem (3)-(5), whose number is denoted by the sub-
script t, running through the subscript set T; the coefficients are denoted as B;.

The following equality holds:

L
3 exp(— i) 1B; (5) — 4; (0] + Co (& 0) —C = 0. (13)

i=0

By means of (12), let us express the unknown B in (13) in terms of the desired o and the known A; and oy
hence, we obtain an equation for oy

L

! i2(ax2 — g2
2 A, (o) exp(— i&,) {eXP [iﬁ’éﬂ—] — 1} + Cy (B 0,)—CP =0. (14)
i=0
Using the notation
L
o= — 3 4, (09 exp (— &) + Cy & 09— C”, (15)
i=0
K, = 4;(op) exp(— &exp(liog*/2) (=1, L), (6)
we arrive at the algebraic equation
, . )
2 Ky =0, y=exp(—o0?/2). (17)

i=0

Let us determine its roots; they will not be greater than 12, Let us extract the real roots which satisfy the
condition 0 <y =1, Letthesebey;, ¥3, ..., Yg3 8= 12, Then the desired oy are defined as oy = V=2Inyt =
0, t =1, s. Substituting the values found for oy in the relationship (12), we obtain all the s of the equally pos-
sible formal solutions of the problem (3)-(5). ‘

Therefore, knowledge of the magnitude of the desired function Cy(¢) at a single point &, still does not free
the solution of the problem (3)-(5) from uncertainty; however, giving condition (5) in a cardinal manner reduces the
spectrum of the solutions of (3) by permitting the extraction of a finite number of them {perhaps just one} from the
nondenumerable set of the latter. Excluding the physically inadmissible solutions for the s solutions found, the
scope of the uncertainty of the solution can be narrowed still more.

Analogous deductions are also valid for the space (e

4. The giving of L? constraints (5) at any points ¢; makes the solution of the problem completely unique.
Moreover, it is clear that uniqueness of the solution of (3) can be achieved by assuming, in addition to the
value C( given a priori, still another value c of the function Cy(£) but a posteriori of the given point £;.

Now let us construct an algorithm for the approximate solution of the problem (3)-(5). Let us agree to
denote the true distribution by C(x) as before and the observed and approximate distributions, respectively, by
C(x) and C*x).

Let us consider the direct method of solution based on inversion of (9) and (10). Givenasufficiently large
L and the value o = o = 1, let us approximate the function C(x) by the model C*(x, o) from the space 3@ or
), Using the solution C¥ (§) found and assuming the value C(O), we determine all s formal solutions of the
problem (3)-(5) by the algorithm described above, and we then extract a finite number N of the physically ac-
ceptable, equally probable, possible solutions in the absence of additional information.

Since the real class of possible distributions Cg(f) is considerably broader than the model classes, the
method described should refer to algorithms of the solution to inverse problems within the framework of a
selection method permitting a search for at least one solution of the problem. Let us note that the model
class may not contain an acceptable solution of the problem (3)-(5) in addition to the case s > 1.

Comparing the proposed semianalytical method with direct numerical methods, we can state the following.

1. Annihilation of the need to replace the initial operator by a finite algebraic sum, as the predominant
majority of numerical algorithms require, raises the stability of the solution to the calculation process.
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2. To achieve the required accuracy of the approximation, the model function C§(&, for which the mum-
ber of free parameters is considerably less than the number of points of the discrete functmn needed to assure
the same degree of approximation, can be used.

3. In the case of a strongly oscillating C(x) when a larger L is formally required because of the smooth~
ness of the model functions, it is nevertheless possible to get used to a considerably smaller L, since sections
of the pulse character for the change in Cy(£), which are due {o local inhomogeneities of the medium, are some-
times not of interest for practical purposes and are subject to smoothing,

By virtue of the Hadamard incorrectness of the problem (3)-(5), an increase in the number L of param-
eters C¥ (£) in the interests of assuring a more detailed description of Cy{) inevitably results in instability of
the unregularized solution resulting from the physical crux of the problem itself. However, in definite cases
[low interference level in c x) 2 dense recording mesh for values of C(x), low value of L]the requirement for
such solutions to obtain rough express-information is completely legitimate, The authors of [5, 11] arrived
at a similar deduction relative to the solution in boundary-value problems.

Now, besides (5), let it be known that the curve Cy() is included in the interval (Cpin, Cpax) in o, Bl;
rough majorant boundaries for Cmin and Cpyax can always be indicated by starting from physical considera-
tions: Cmin = Co()) = Cmax, £ € [o, B]. Let us also assume the errors in the values C(x) do not exceed some
given 0 > 0: HC(x) C)}| = 6 in the norm: [for definiteness, we take the maximum deviation of C(x) from C(x)
as the norm}. Here it is convenient to carry out the solution on the basis of functional programming methods.

Let us initially construct an algorithm for fixed o. If is required to solve the following generalized
linear programming problem:
max [C* (x;) — C(x;) = min (18)
i=l,n i
for a constraint in the form of the equality
L

N A (&) =C (19)

i=0

and a nondenumerable set of constraints of the form of the inequalities
min 2 A 1!)”” @< max’ tcla, ﬁ]r (20)

where n is the number of points recording the field C(x), and the structure of the function C*(x) is defined by the
right side of (9) or (10).

Formulation of the problem (18)-(20) in a known manner reduces to a standard [13], and by virtue of the
compactness of the domain of variation of the coefficients z[)§ ) for the desired A; in (20) it can be solved by the
inverse matrix method [14]. '

~ Since L plays the part of a natural regularization parameter [6], in order to raise the stability of the
solution it is necessary to select the least possible L = L admitting solvability of the problem (18)-(20) under
the condition

IC* (x) — C (%) < 8. @1

We find the lower bound Ly, i, for Ly by means of the absolute minimization of the functional (18) for values of

L starting with 0 and growing successively by one {in other words, by clarifying the compatibility of the system
of n two-sided inequalities of the type (21)]. Then the first minimum L for which the functional does not exceed
6 is indeed L, ;,, with which the solution of the problem (18), (19), (20) must start and the growth of L must con-
tinue in the case of no assurance as to compliance with condition (21).

A simpler algorithm for the solution of the problem with fixed ¢ can be indicated, for which we cover [a,
B] by a mesh {51}1_1 and we demand compliance with condition (20) only at its nodes. Replacement of the non-
denumerable set of constraints by a finite number results in the classical linear programming problem, whose
known methods of solution [15] are sufficiently simpler than the inverse matrix method. Although weakening
of the constraints (20) can drive the curve C¥ (£) beyond admissible limits, it is completely competent in definite
cases, since the boundaries of Cy,jp and Cyax are usually known to the ervor p, and the field C¥(¢) can be en~
closed in the interval (Cypin—p, Cmax+p) by compressing the grid, Moreover, it is sometimes required to
obtain only a qualitative solution, i.e., to clarify the pole of condensation of the concentration without its
quantitative estimation,



If ¢ is desired, the solution of the problem can be obtained by varying ¢ in a mesh of values = = {oy} given
in some reasonable limits and by using the solution of the algorithm for fixed ¢in each cycle. We select oy, as
desired, for which the solution is achieved for least L. After the construction of such a C}(), the possible
solutions of the problem specified by values of o which do not belong to the mesh T must be determined by solv-
ing an equation of the type (14), and those must be selected which satisfy the constraint (20).

The problem under investigation can finally be solved by the method of regularization {16] (hence, know-
ledge of the quantities 0, Cmm, and Cmﬁ is not obligatory), where in place of the traditional mesh functions
C(¢) functions of the spaces T©@) and ¥ are used. Approximating the integral operator is not performed and
the functional to be minimized ~

2 (€ x) —C* (x)P + j (CF @)Y dt

j=I
— for fixed ¢ is a quadratic functional in the variables Aj.

The solution of the problem reduces to absolute minimization of this functional in a mesh of values of the
regularization parameter @, and the selection of the best of these values can be realized by the principle of
the quasioptimal parameter [17] without requiring knowledge of 6:

Og.q = N {A= IC & a.1'4-1) —C3 (& 0_61).},
e
_ B o (22)
= {a}o, Gjuq=n; &y x>0,
where the domain of definition of the function in (22) is the segment [o, f]. The presence of the constraint (20)
admits of a more purposeful selection of @ and the information (21) of the natural regularization parameter L.
Let us note that the regularization algorithm in the problem (3) is used in [18].

NOTATION

C is the concentration;
D is the coefficient of diffusion;
Cy is the initial distribution of concentration;

X is a coordinate;
& is a coordinate;
T is the time.
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